High rank torus actions on contact manifolds

نویسندگان

چکیده

Abstract We prove LeBrun–Salamon conjecture in the following situation: if X is a contact Fano manifold of dimension $$2n+1$$ 2 n + 1 whose group automorphisms reductive rank $$\ge \max (2,(n-3)/2)$$ ≥ max ( , - 3 ) / then adjoint variety simple group. The assumption fulfilled not only by three series classical linear groups but also almost all exceptional ones.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Convexity Theorem for Torus Actions on Contact Manifolds

We show that the image cone of a moment map for an action of a torus on a contact compact connected manifold is a convex polyhedral cone and that the moment map has connected fibers provided the dimension of the torus is bigger than 2 and that no orbit is tangent to the contact distribution. This may be considered as a version of the Atiyah Guillemin Sternberg convexity theorem for torus action...

متن کامل

TORUS AND Z/p ACTIONS ON MANIFOLDS

Let G be either a finite cyclic group of prime order or S. We show that if G acts on a manifold or, more generally, on a Poincaré duality space M , then each term of the Leray spectral sequence of the map M×GEG → BG satisfies a properly defined “Poincaré duality.” As a consequence of this fact we obtain new results relating the cohomology groups of M and M. We apply our results to study group a...

متن کامل

Completely Integrable Torus Actions on Complex Manifolds with Fixed Points

We show that if a holomorphic n-dimensional compact torus action on a compact connected complex manifold of complex dimension n has a fixed point then the manifold is equivariantly biholomorphic to a smooth toric variety.

متن کامل

Actions of the Torus on 4-manifolds. I

Smooth actions of the 2-dimensional torus group SO(2) x 50(2) on smooth, closed, orientable 4-manifolds are studied. A cross-sectioning theorem for actions without finite nontrivial isotropy groups and with either fixed points or orbits with isotropy group isomorphic to SO(2) yields an equivariant classification for these cases. This classification is made numerically specific in terms of orbit...

متن کامل

Complex structures on 4-manifolds with symplectic 2-torus actions

We apply the general theory for symplectic torus actions with symplectic or coisotropic orbits to prove that a 4-manifold with a symplectic 2-torus action admits an invariant complex structure and give an identification of those that do not admit a Kähler structure with Kodaira’s class of complex surfaces which admit a nowhere vanishing holomorphic (2, 0)-form, but are not a torus or a K3 surface.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Selecta Mathematica-new Series

سال: 2021

ISSN: ['1022-1824', '1420-9020']

DOI: https://doi.org/10.1007/s00029-021-00621-w